

ENGAGE
AND ADVANCE

Ascend
Webinars

TRANSCRIPT: Supply Chain Resilience – ASQE Jan 2025 Ascend Webinar

1

00:00:02.240 --> 00:00:07.290

Brian Scarpace: Hello! Welcome, everybody! We'll just give it another minute here to let people in the room.

2

00:00:25.460 --> 00:00:30.069

Brian Scarpace: If you just joined us, we're just giving everybody a chance to get into the room to

3

00:00:30.890 --> 00:00:33.370

Brian Scarpace: get settled and enjoy today's content.

4

00:01:01.540 --> 00:01:05.100

Brian Scarpace: Okay, welcome, everybody. I think we'll go ahead and get started.

5

00:01:06.460 --> 00:01:18.899

Brian Scarpace: So hello, welcome to today's ASQE Ascend Webinar focused on Supply Chain Resilience. My name is Brian Scarpace, and I serve as the Executive Director of Global Success for ASQE, and we're glad you're joining us today.

6

00:01:18.900 --> 00:01:42.429

Brian Scarpace: I want to say, 1st of all, thank you to our Organizational Members who are joining us. Thank you so much for your membership, and I know we have some guests who might be joining us today, too. So welcome. We're looking forward to providing a lot of great content for you today. One item to note that these slides that for today will be available in our ASQE Events Portal. We'll put a link in the chat for that. And then post post-event, we'll have an email that goes out in about a day or so.

7

00:01:42.500 --> 00:01:50.040

Brian Scarpace: and that'll include a link to the recording. And the great thing about that is that you can share that with others on your team who may not have had a chance to join today.

8

00:01:52.130 --> 00:02:15.209

Brian Scarpace: So, a little bit about us, ASQExcellence, or ASQE. For short, we are an independent and complementary entity to ASQ, and our mission is to deliver credentialing, quality driven offerings, and insights to organizations in support of their performance excellence journey. And today's webinar is a great example of

the type of offering we make available to our organizational members and customers to provide insights and other value for them.

9

00:02:17.730 --> 00:02:34.250

Brian Scarpace: All right, I'm very excited to announce today's presenter, Mr. Russ Snyder. Russ is the founder of 6 Sigma Supply Chain Consulting, and CEO of Clear Blew. He retired as a Senior Director at the Intel Corporation, managing supply chain operations for 23 years.

10

00:02:34.810 --> 00:02:57.819

Brian Scarpace: Russ is a Registered Professional Engineer, MBA, and Lean and Six Sigma Greenbelt. He's also a frequent presenter at ASQ conferences. He's an ASQ Senior Member, and he's also the Chair-elect of the Electronics and Communication Division, and he also won the 2020 Lean Excellence Award from the USC Marshall School of Business. Welcome, Russ, we're excited to have you here. I'm going to hand it over to you.

11

00:03:04.910 --> 00:03:24.840

Russ Snyder: Thank you, Brian. We'll go ahead and dive right into the presentation today, and I've spoken a few times over the last few years on supply chain resilience. I developed a model a few years back, and I've been advancing that model. And today we'll talk about using it to manage your risk in supply chain.

12

00:03:25.470 --> 00:03:34.290

Russ Snyder: So today, our learning objectives are, understand supply chain business risk, develop a resilience score for each node on your supply network

13

00:03:34.810 --> 00:03:40.419

Russ Snyder: design and flexibility, balance, flexibility, and anticipate market turns.

14

00:03:40.750 --> 00:03:43.749

Russ Snyder: reduce risk and balance your supply chain.

15

00:03:49.150 --> 00:04:02.369

Russ Snyder: So let's get started with a few articles that I found that talk about the state of supply chain and how broken or healed it may be. The Economist Magazine, I really find, is

16

00:04:02.930 --> 00:04:09.070

Russ Snyder: done an interesting job at saying that we're probably not ever going to fix our supply chains.

17

00:04:10.790 --> 00:04:12.730

Russ Snyder: They report that

18

00:04:13.020 --> 00:04:21.120

Russ Snyder: that most of the precautions or the risk mitigations are more costly and too difficult to implement.

19

00:04:21.220 --> 00:04:26.839

Russ Snyder: They use a quote from Napoleon, and we know that his tenure didn't end very well.

20

00:04:27.250 --> 00:04:32.459

Russ Snyder: but his quote was, the torment of precautions often exceeds the dangers to be avoided.

21

00:04:32.710 --> 00:04:41.019

Russ Snyder: It's sometimes better to abandon oneself to destiny, meaning, don't do anything, move forward and let it go

22

00:04:41.150 --> 00:04:41.825

Russ Snyder: and

23

00:04:43.090 --> 00:04:53.160

Russ Snyder: I'm going to try to convince you today that there are things you can do that don't require a lot of cost to at least understand your risk, and then take steps to manage it.

24

00:04:54.260 --> 00:05:01.430

Russ Snyder: The Harvard Business Review shares with us. That supply chain disruption isn't the only problem

25

00:05:02.430 --> 00:05:05.339

Russ Snyder: supply chain often is a feast and famine

26

00:05:06.050 --> 00:05:14.629

Russ Snyder: system where you have excesses, and then you have shortages, and it flips back and forth. And

27

00:05:14.760 --> 00:05:20.499

Russ Snyder: you know, the last year they published that the next supply chain challenge isn't a shortage. It's an inventory glut.

28

00:05:20.860 --> 00:05:24.500

Russ Snyder: I'll share with you later that in the semiconductor space, that's true.

29

00:05:26.820 --> 00:05:40.240

Russ Snyder: And then Forbes finally, they did an article about broken supply chains. Are they really broken? And this was 3 years after the pandemic began, and some industries were still experiencing shortages.

30

00:05:41.000 --> 00:05:53.799

Russ Snyder: And so, I what I think is, you know, supply chain. It can pick and choose which industries it has issues, demand comes and goes.

31

00:05:53.950 --> 00:05:58.520

Russ Snyder: customers hoard products, causing

32

00:05:58.660 --> 00:06:04.129

Russ Snyder: the flip side. Where then there's excess inventory. When they quit buying for quite a period of time.

33

00:06:04.270 --> 00:06:08.429

Russ Snyder: and we'll move. Go ahead and move to the next one to define some business risk.

34

00:06:08.590 --> 00:06:14.869

Russ Snyder: ISO 9001 defines risk as the effect of uncertainty on an expected result.

35

00:06:18.000 --> 00:06:31.320

Russ Snyder: and it goes on to say it can be positive or negative, and you know a lot of times in supply chain. We'll see that we have a shortage which is a negative, and then we have an excess which is positive.

36

00:06:32.130 --> 00:06:37.369

Russ Snyder: neither one or what we want. We want to remain in steady state the whole time. Where we have

37

00:06:37.620 --> 00:06:40.540

Russ Snyder: supply and demand balanced.

38

00:06:41.100 --> 00:06:51.909

Russ Snyder: McKinsey is also a big on risk management, and they say business risk is exposure to a situation that can lead to decreased profits or bankruptcy.

39

00:06:52.260 --> 00:06:55.113

Russ Snyder: I think we've seen that in the pandemic

40

00:06:55.920 --> 00:07:03.119

Russ Snyder: they include specifically supply chain disruptions as one of those events that can put your business at risk.

41

00:07:04.950 --> 00:07:11.549

Russ Snyder: Let's define resilience in a few different terms, the capacity to withstand and recover from a disruption.

42

00:07:12.320 --> 00:07:25.840

Russ Snyder: And we'll go a little bit towards a systems engineering approach. And we'll look at response time of a system and response. Time is in engineering terms. The time it takes for a system to return back to steady state.

43

00:07:25.980 --> 00:07:31.349

Russ Snyder: and that can be from a negative or a positive

44

00:07:33.249 --> 00:07:46.280

Russ Snyder: stimulation to the system. And that means, you know, we could have a shortage, and we could have an excess, but we would prefer to have neither of those, and have any one of those as short a time as we can possibly manage it.

45

00:07:47.090 --> 00:07:54.900

Russ Snyder: Factors to calculate a resilience, score time to return to steady state and lost revenue risk as a percentage of revenue.

46

00:07:55.300 --> 00:08:05.099

Russ Snyder: Now, you can imagine that you have to may have to have a lot of inputs to be able to determine that time to return to steady state. But that's what I want to show you in my model

47

00:08:09.380 --> 00:08:17.939

Russ Snyder: some of the probable disruptions from published also from McKinsey in their risk, resilience, and rebalancing in global supply chain

48

00:08:18.130 --> 00:08:19.410

Russ Snyder: document.

49

00:08:20.210 --> 00:08:22.929

Russ Snyder: And if you look at the table on the right.

50

00:08:23.110 --> 00:08:33.330

Russ Snyder: It talks about various different catastrophes and disruptions, anything from a meteoroid strike to an acute climatological event

51

00:08:33.799 --> 00:08:43.000

Russ Snyder: and everything in between, but what they do define it, as each of these has a fixed duration of the event that's going to be a disruption

52

00:08:43.270 --> 00:08:47.000

Russ Snyder: anywhere from one to 2 weeks to 2 plus months.

53

00:08:47.110 --> 00:08:57.740

Russ Snyder: And what I think about these types of disruptions are that many of these outages for a short duration can be managed through inventory alone

54

00:08:58.040 --> 00:09:00.329

Russ Snyder: and different inventory levels.

55

00:09:01.250 --> 00:09:04.800

Russ Snyder: But in my experience in the semiconductor industry

56

00:09:05.430 --> 00:09:21.760

Russ Snyder: we have a global or industry. Wide event happen about every 7 to 10 years, and you know it could be an enormous demand change such as around the year 2K event, or it could be a pandemic which drives demand for

57

00:09:22.120 --> 00:09:26.500

Russ Snyder: laptops for working from home to extreme levels.

58

00:09:28.310 --> 00:09:35.580

Russ Snyder: But more frequently we have single supplier events that occur about every 3 years, and this can be everything from

59

00:09:35.960 --> 00:09:41.909

Russ Snyder: a supplier who has a factory fire, and that factory is incapable of producing for over a year.

60

00:09:42.777 --> 00:09:43.910

Russ Snyder: It could be

61

00:09:44.710 --> 00:09:53.579

Russ Snyder: suppliers who have oversold their capacity, and cannot solve that problem because it takes a long time to add capacity.

62

00:09:53.830 --> 00:10:02.300

Russ Snyder: and these occur about every 3 years, when, in fact, we had 2 different suppliers with factory fires that took their production down for over a year.

63

00:10:03.710 --> 00:10:11.230

Russ Snyder: and many events aren't this short in duration? And they last for a year or more of limited output. And I'll go into that a little more later.

64

00:10:12.870 --> 00:10:22.410

Russ Snyder: Let's talk about some probable uncertainties, and these are a lot more common factors impacting resilience, and these occur on the more frequent every 3 year. Basis.

65

00:10:23.430 --> 00:10:29.889

Russ Snyder: Unplanned upsides or downsides in demand. A product could be more popular than anyone forecast.

66

00:10:30.660 --> 00:10:39.919

Russ Snyder: It could be a situation where customers are hoarding the product, and at some point the demand is going to evaporate because they have too much.

67
00:10:40.370 --> 00:10:46.549
Russ Snyder: The product loses competitive edge and could be unforecast downsides in demand.

68
00:10:48.400 --> 00:11:03.790
Russ Snyder: Couple of the most frequent issues we've had are suppliers who sell out their capacity and limit our shipments, and didn't notify us of the coming shortages, or we forecast something that was far too low than that they planned for.

69
00:11:04.650 --> 00:11:10.510
Russ Snyder: And then, lastly, a protracted yield or quality issue can also cause a long term

70
00:11:11.340 --> 00:11:14.419
Russ Snyder: inability to to meet your total demand.

71
00:11:18.030 --> 00:11:26.900
Russ Snyder: Now, key factors in resilience, and I'll talk about this in a couple of different ways as we go through the slides. The 1st one is capacity buffers.

72
00:11:28.820 --> 00:11:36.839
Russ Snyder: and you know every pol. Every corporation has its own policy on capacity. And how much buffer you'll keep?

73
00:11:37.250 --> 00:11:42.550
Russ Snyder: Is it a reward for max profitability to drive high utilization?

74
00:11:42.700 --> 00:11:50.290
Russ Snyder: Or is there some amount of resilience planning that allows for fluctuations in demand and the ability to handle it.

75
00:11:51.190 --> 00:12:00.379
Russ Snyder: Similarly, not only your internal capacity, but your suppliers, buffer capacity, and inventory levels, should be known and monitored by the customer.

76
00:12:00.890 --> 00:12:09.270
Russ Snyder: And what what I find is that even in our situation many times we did not know our capacity.

77

00:12:10.020 --> 00:12:12.700

Russ Snyder: our capacity forecast from our suppliers.

78

00:12:15.570 --> 00:12:20.699

Russ Snyder: We don't have a mandatory requirement for suppliers or report capacity buffers or

79

00:12:21.330 --> 00:12:27.140

Russ Snyder: or their capacity forecast. We do ping them every once in a while to understand that. But

80

00:12:27.855 --> 00:12:39.850

Russ Snyder: after living through the pandemic, I believe that suppliers should automatically report capacity and tight capacities on a monthly or quarterly basis.

81

00:12:40.750 --> 00:12:46.099

Russ Snyder: inventory buffers mitigate near-term demand uncertainty and most disruptions.

82

00:12:46.230 --> 00:12:50.949

Russ Snyder: But it doesn't mitigate long-term sustained disruptions.

83

00:12:51.390 --> 00:12:53.460

Russ Snyder: And lastly, multi-sourcing.

84

00:12:53.850 --> 00:12:54.690

Russ Snyder: And

85

00:12:55.140 --> 00:13:09.570

Russ Snyder: simply I just say good suppliers. Have bad days, you know. I mentioned that about every 3 years we had a big, supplier incident, 2 of those being factory fires, and they were good suppliers, and they just could not deliver to us

86

00:13:12.320 --> 00:13:22.819

Russ Snyder: a little bit of a side note here on resilience just in time and lean, and why they're changing to make supply lines more resilient.

87

00:13:23.030 --> 00:13:28.100

Russ Snyder: My 1st article is from Reuters how Toyota thrives when the chips are down.

88

00:13:29.120 --> 00:13:32.529

Russ Snyder: and it goes on to say that from the Fukushima earthquake.

89

00:13:32.740 --> 00:13:39.679

Russ Snyder: Toyota had significant supply disruptions, and from that they changed their business continuity, planning

90

00:13:40.010 --> 00:13:46.490

Russ Snyder: to increase inventories for things like semiconductors and other long lead time items.

91

00:13:47.790 --> 00:14:03.100

Russ Snyder: And I think you'll note in the article that talks about from 2 to 6 months worth of inventory, and you know, just to compare that to days. We do days of inventory that's 60 to 180 days of inventory, and that'll come in.

92

00:14:03.230 --> 00:14:06.000

Russ Snyder: Come into play when we start working on the model.

93

00:14:06.950 --> 00:14:15.839

Russ Snyder: The Journal of Lean Six Sigma had a paper presented, published, called "Lean, Agile Resilience, and Green Divergences and Synergies,"

94

00:14:16.250 --> 00:14:27.570

Russ Snyder: and what I'll show you is that 2 of the areas for resilience were capacity surplus and inventory levels. 2 of the 2 of the 3 things that I believe you need for resilience.

95

00:14:28.060 --> 00:14:36.749

Russ Snyder: and you'll notice that resilience requires increased capacity, surplus and inventory levels.

96

00:14:36.910 --> 00:14:44.869

Russ Snyder: And you look at the lean column and lean is trying to reduce inventories and reduce capacity surplus.

97

00:14:46.010 --> 00:14:48.709

Russ Snyder: So what? What I believe

98

00:14:49.790 --> 00:15:01.129

Russ Snyder: what I believe is that lean essentially works against the physics of supply chain that require a certain amount of slack to be successful through disruptive events.

99

00:15:03.740 --> 00:15:06.990

Russ Snyder: Now we'll explain the model and how to set up the model.

100

00:15:07.870 --> 00:15:14.529

Russ Snyder: And if you look at the the 1st 4 lines on my spreadsheet.

101

00:15:15.510 --> 00:15:24.890

Russ Snyder: their lead time, capacity, buffer percentage, number of sources and inventory. These are the primary inputs required to

102

00:15:25.140 --> 00:15:31.100

Russ Snyder: be able to give and take and make trade-offs on how quickly

103

00:15:31.320 --> 00:15:37.610

Russ Snyder: your supply chain will return to steady state across the top.

104

00:15:40.350 --> 00:15:53.180

Russ Snyder: across the top, show you the supply chain. The green dots are inventory locations, and the others are actually manufacturing stops on the supply chain. So, you see that we have 4 wafer Fab

105

00:15:53.280 --> 00:16:00.990

Russ Snyder: assembly test and board manufacturing. And this is true for almost every electronic supply chain

106

00:16:02.570 --> 00:16:13.320

Russ Snyder: and the model here I've already put in a disruption, and I'll show you how that that computes a resilience factor for each one of these different manufacturing sites on our

107

00:16:13.470 --> 00:16:14.870

Russ Snyder: on our supply chain.

108

00:16:15.570 --> 00:16:25.560

Russ Snyder: So the Fab, you see, lead time is 77 weeks and 77 is the number it takes to add capacity once capacity has filled up.

109

00:16:25.990 --> 00:16:42.520

Russ Snyder: and that's quite a long lead time, and what you'll see is with a buffer of a buffer capacity of minus 20% meaning. You're only going to get 80% of what you order. You have a single source, only 21 days of inventory.

110

00:16:42.900 --> 00:16:49.490

Russ Snyder: then the revenue risk with this disruption is 362 million dollars.

111

00:16:49.840 --> 00:16:53.619

Russ Snyder: and the resilience factor calculated is 0 point 9.

112

00:16:54.170 --> 00:17:00.150

Russ Snyder: Now let's talk about what the resilience factor means. 0 is the lowest possible resilience.

113

00:17:00.430 --> 00:17:06.710

Russ Snyder: and 10 is the highest resilience, meaning you will miss 0 shipments and 0 revenue.

114

00:17:10.250 --> 00:17:19.670

Russ Snyder: So, the disruption that we're modeling here is a 30% increase in demand, a 20% loss of capacity and a 7 day outage.

115

00:17:20.990 --> 00:17:28.590

Russ Snyder: and if you look at assembly where the lead time to get new capacity is only 17 weeks.

116

00:17:28.720 --> 00:17:34.409

Russ Snyder: then our resilience factor is all the way up to 8.4,

117

00:17:35.100 --> 00:17:37.420

Russ Snyder: and you look at board manufacturing

118

00:17:38.280 --> 00:17:44.410

Russ Snyder: with only a 13 week time to add capacity. We're at a resilience factor of 9

119

00:17:45.770 --> 00:18:00.559

Russ Snyder: now. The resilience factor is a it's a relative measure of of how resilient am I? And that's a factor of how long it takes to recover, and how much revenue loss I'm going to have during that period of time.

120

00:18:01.020 --> 00:18:09.400

Russ Snyder: And you see that even with a 9.0 resilience factor, we still had 42 million dollars of revenue lost.

121

00:18:09.840 --> 00:18:17.490

Russ Snyder: But that's only 4.2% of total revenue, which is a risk.

122

00:18:18.400 --> 00:18:21.910

Russ Snyder: worth taking to some not worth taking to others.

123

00:18:26.590 --> 00:18:27.450

Russ Snyder: Okay.

124

00:18:28.040 --> 00:18:38.690

Russ Snyder: we're going to go through a few examples of different one different of our manufacturing sites on the network, and how you can model different ways to manage your risk.

125

00:18:39.330 --> 00:18:48.870

Russ Snyder: and with a mix of capacity, multi sources, and inventory. And it'll compute a different resilience factor based on

126

00:18:49.090 --> 00:18:58.700

Russ Snyder: these different methods of mitigating your risk, and it allows you to make trade-offs. You don't have to put it all in inventory. You can have capacity buffers.

127

00:18:59.510 --> 00:19:05.959

Russ Snyder: and what this does is, it'll allow you to cost out what

128

00:19:06.070 --> 00:19:13.359

Russ Snyder: mitigations you might be taking. Based on the different different resilience factors.

129

00:19:13.760 --> 00:19:19.488

Russ Snyder: All right. So, the lead time for new capacity to Fab is 77 weeks.

130

00:19:20.940 --> 00:19:27.859

Russ Snyder: and we're going to use the same disruption, 30% upside in demand, minus 20% capacity, loss.

131

00:19:28.000 --> 00:19:30.850

Russ Snyder: and an outage duration of 7 days.

132

00:19:31.890 --> 00:19:37.620

Russ Snyder: So, the 1st column is the disruption that I showed you before with a point 9 resilience factor.

133

00:19:37.890 --> 00:19:53.540

Russ Snyder: If we just change inventory levels to 180 days, like Toyota did for their semiconductors. We dramatically increase our resilience, and we dramatically reduce our risk just by adding inventory.

134

00:19:53.910 --> 00:20:00.169

Russ Snyder: and you can see that we reduce our revenue risk from 362 million to 90 million dollars.

135

00:20:01.350 --> 00:20:05.940

Russ Snyder: Now, if we continue to add a second source

136

00:20:06.170 --> 00:20:19.700

Russ Snyder: and capacity buffer. In the second source we can significantly lower inventory days in the 3rd column to 94.5, and our resilience factor is the same 7.7 5.

137

00:20:20.630 --> 00:20:26.439

Russ Snyder: If you want to make your resilience so that you will lose no revenue based on this particular disruption.

138

00:20:26.700 --> 00:20:30.249

Russ Snyder: you can add a 30% buffer at your second source.

139

00:20:30.610 --> 00:20:35.730

Russ Snyder: 126 days of inventory, and you will miss no revenue.

140

00:20:36.380 --> 00:20:38.090

Russ Snyder: Take no risk.

141

00:20:39.140 --> 00:20:45.009

Russ Snyder: I pretty much am not an advocate that you should mitigate a hundred percent of your disruption.

142

00:20:45.260 --> 00:20:49.390

Russ Snyder: You should balance that, and we'll talk about balancing later.

143

00:20:49.900 --> 00:21:05.090

Russ Snyder: All right, let's look at board manufacturing and the same disruption, and let's move from left to right. And if you look at just adding inventory of 45 to 45 days. You see that we increase the resilience to 10,

144

00:21:05.820 --> 00:21:07.590

Russ Snyder: meaning no revenue lost.

145

00:21:07.830 --> 00:21:13.890

Russ Snyder: We can reduce the inventory in the next column by adding a second source with a 20% buffer capacity.

146

00:21:14.180 --> 00:21:15.879

Russ Snyder: And in the 3rd column

147

00:21:16.310 --> 00:21:22.609

Russ Snyder: we can add a 30% buffer capacity to our second source, and only 24 days of inventory.

148

00:21:22.870 --> 00:21:28.399

Russ Snyder: So, you see that there are multiple ways to achieve low risk in your supply chain.

149

00:21:28.580 --> 00:21:31.489

Russ Snyder: Balancing these 3 inputs.

150

00:21:33.210 --> 00:21:39.530

Russ Snyder: The key takeaway. Here is the shorter the lead time, the higher the resilience and the mitigation is more flexible.

151

00:21:43.020 --> 00:21:55.970

Russ Snyder: Let's go back to Fab, and we're going to look at pandemic conditions. We're going to model the pandemic what really went on. And our experience through the pandemic and wafer Fab was one of our big

152

00:21:57.330 --> 00:22:02.670

Russ Snyder: constraints that we had to deal with, and our primary Fab

153

00:22:02.960 --> 00:22:07.430

Russ Snyder: reduced our output that we were requesting by 40%.

154

00:22:07.570 --> 00:22:13.049

Russ Snyder: And they really didn't give us a lot of lead time. We had. Like 4 months of lead time.

155

00:22:13.820 --> 00:22:18.350

Russ Snyder: We had a single source. We carried a typical 21 days of inventory.

156

00:22:19.150 --> 00:22:27.469

Russ Snyder: and that revenue risk, had we not done anything would have been 652 million dollars, or

157

00:22:27.670 --> 00:22:29.990

Russ Snyder: almost 2 thirds of our revenue.

158

00:22:31.070 --> 00:22:32.190

Russ Snyder: So,

159

00:22:33.180 --> 00:22:40.089

Russ Snyder: so what did we do? We had actually taped out a part to a second Fab who had the same process.

160

00:22:40.340 --> 00:22:47.390

Russ Snyder: and we did an emergency qualification of that Fab to add capacity.

161

00:22:47.610 --> 00:22:53.470

Russ Snyder: But if we were going to model this disruption and decide how many, how much.

162

00:22:53.660 --> 00:23:02.240

Russ Snyder: how much inventory would it take to get to a resilience factor, and I've used 7.7 5 in the previous example. I use it here, too.

163

00:23:02.460 --> 00:23:05.579

Russ Snyder: It would take 302 days of inventory.

164

00:23:06.326 --> 00:23:09.170

Russ Snyder: To basically get to the same resilience

165

00:23:09.330 --> 00:23:12.389

Russ Snyder: that we had in the previous model.

166

00:23:14.030 --> 00:23:26.670

Russ Snyder: If we add the second Fab and the second Fab actually has 0 buffer capacity, but has we can allocate 50% to them that we only need to keep 250 days of inventory.

167

00:23:27.560 --> 00:23:29.910

Russ Snyder: It gives us the same resilience factor.

168

00:23:30.540 --> 00:23:41.859

Russ Snyder: If we actually have 10% buffer at our second source, then we can bring our we can manage with 276 days of inventory to get to

169

00:23:41.970 --> 00:23:46.110

Russ Snyder: no risk a 0-revenue risk option.

170

00:23:47.680 --> 00:23:52.590

Russ Snyder: What I'll say here is the prevention cost is far less than the revenue loss.

171

00:23:53.314 --> 00:23:57.540

Russ Snyder: Opportunity. And I think that you see that you know when

172

00:23:58.480 --> 00:24:05.370

Russ Snyder: you know automakers struggle to get semiconductors, you can see that the revenue risk would be quite large.

173

00:24:07.900 --> 00:24:16.070

Russ Snyder: All right, let's look at board manufacturing, which has a much shorter lead time to add capacity. What will we do in pandemic conditions.

174

00:24:16.555 --> 00:24:29.339

Russ Snyder: Again, the demand is up 50%. The capacity buffers are 0. And then at the board factory we actually had an outage for 35 days at both suppliers. We had 2 suppliers to begin with.

175

00:24:29.550 --> 00:24:33.720

Russ Snyder: and we're so we're going to model the actual, the actual issue here.

176

00:24:34.060 --> 00:24:37.999

Russ Snyder: And you see that with our with our

177

00:24:38.410 --> 00:24:44.390

Russ Snyder: our normal mitigation of capacity buffer of 20%, a number of sources.

178

00:24:44.550 --> 00:24:47.259

Russ Snyder: 1, 21 days of inventory.

179

00:24:47.520 --> 00:24:50.349

Russ Snyder: our revenue risk would still only be

180
00:24:51.500 --> 00:24:54.520
Russ Snyder: \$83 thousand, \$83 million dollars.

181
00:24:55.060 --> 00:25:04.240
Russ Snyder: and that's pretty resilient because it takes such a short time to add capacity. And you have buffer to catch up when you come back online.

182
00:25:05.130 --> 00:25:13.029
Russ Snyder: If you wanted to take 0 risk, there's many, many different options to balance 0 risk. If we had one source, 20% buffer.

183
00:25:14.060 --> 00:25:18.249
Russ Snyder: and we would need 79 days of inventory.

184
00:25:18.630 --> 00:25:28.170
Russ Snyder: And if you go to the far right, if we had 30% buffer capacity with 2 suppliers. We'd only need 47 days of inventory to have no revenue risk.

185
00:25:30.350 --> 00:25:40.319
Russ Snyder: Now, I modeled a 50% upside in demand. But in reality, in 2020, we actually had a 70% upside in orders.

186
00:25:40.450 --> 00:25:49.105
Russ Snyder: and we made it the real fab capacity. Constraint happened in 2021 and

187
00:25:50.160 --> 00:25:53.359
Russ Snyder: and that's when we had to get the second source online.

188
00:25:53.890 --> 00:26:00.530
Russ Snyder: But our mitigation with 2 sources and capacity Buffer held up pretty well, even though we didn't have

189
00:26:00.820 --> 00:26:04.829
Russ Snyder: the 79 days or the 47 days of inventory.

190
00:26:09.660 --> 00:26:10.510
Russ Snyder: okay.

191
00:26:11.590 --> 00:26:25.690
Russ Snyder: let's talk about the summary and the things that the model gives you the opportunity to make business decisions and management decisions. For one is anticipate the model forecast, the impact of a disruption

192
00:26:26.500 --> 00:26:29.819
Russ Snyder: of each node of your value chain before it happens.

193
00:26:30.180 --> 00:26:35.100
Russ Snyder: the resilience factor provides a normalized impact to your business for each node.

194
00:26:35.320 --> 00:26:39.580
Russ Snyder: So, if you're planning to mitigate risks, you can say, Okay.

195
00:26:39.700 --> 00:26:50.239
Russ Snyder: I want to manage my risk to a 7.5 resilience factor. We know you're not mitigating all risk, but you're mitigating some risk.

196
00:26:53.050 --> 00:26:54.955
Russ Snyder: It's a huge

197
00:26:56.340 --> 00:26:59.080
Russ Snyder: It's a huge tool to calculate

198
00:26:59.698 --> 00:27:03.910
Russ Snyder: your to to help prepare your business continuity plan.

199
00:27:04.060 --> 00:27:21.740
Russ Snyder: If you actually model what's going to happen, it's much easier to put together a business continuity plan, regardless. If it's a an earthquake or a geopolitical event, you you don't model an event, you model. How much outage am I going to have.

200

00:27:23.090 --> 00:27:26.569

Russ Snyder: or how much loss of capacity am I going to have?

201

00:27:27.350 --> 00:27:31.150

Russ Snyder: It provides a measure of risk for each node of your value chain.

202

00:27:32.650 --> 00:27:36.319

Russ Snyder: It also allows you to make trade-offs in cost and risk.

203

00:27:36.460 --> 00:27:44.700

Russ Snyder: And what I, what I shared with you is a balance of risk mitigations between inventory capacity, buffer, and number of sources.

204

00:27:45.280 --> 00:27:49.510

Russ Snyder: you can evaluate the cost of mitigation versus the lost revenue.

205

00:27:53.300 --> 00:28:00.809

Russ Snyder: Now you see this lady in this picture, she's looking fairly horrified at what she's seeing the problem with

206

00:28:01.400 --> 00:28:11.290

Russ Snyder: with risk, mitigation, and adding capacity buffers is, there's always a downside of resilience, and that's when demand drops.

207

00:28:11.600 --> 00:28:20.409

Russ Snyder: And if and similar to what happened in the pandemic demand, skyrocketed for certain things, for through 2021,

208

00:28:20.680 --> 00:28:28.789

Russ Snyder: and then in 2022 demand evaporated, and we're left with a lot of excess capacity. A lot of inventory

209

00:28:30.200 --> 00:28:38.910

Russ Snyder: so demand drop in cyclical or disrupted industries can take our supply chains again out of steady state, leaving us with excess, capacity, and inventory.

210

00:28:39.070 --> 00:28:53.730

Russ Snyder: Preparing for this inevitability requires different modeling and response. It also requires understanding, customer behavior and industry macro indicators. And what I'll share with you is a little bit of how we take a look at these things.

211

00:28:55.350 --> 00:29:04.870

Russ Snyder: So the resilience model also has a parallel model that allow you to take your mitigation

212

00:29:05.120 --> 00:29:17.550

Russ Snyder: and then apply a 30% downside, or whatever demand. Drop that you want to understand what the implications are to your supply chain and inventory and capacity surplus.

213

00:29:18.680 --> 00:29:19.580

Russ Snyder: Excuse me.

214

00:29:24.540 --> 00:29:34.669

Russ Snyder: So, you see that we need to, we need to add something called cancellation days. How long will it be till I'm I don't have to take the material that I've ordered

215

00:29:36.968 --> 00:29:42.449

Russ Snyder: inventory levels that you've calculated for to manage your disruption.

216

00:29:42.870 --> 00:29:45.890

Russ Snyder: and then we'll take a 30% demand drop.

217

00:29:46.050 --> 00:29:55.879

Russ Snyder: In this particular case. You know, we have inventory excess risk at different levels based on the different inventory levels that we've we've chosen.

218

00:29:56.120 --> 00:30:02.420

Russ Snyder: and you see that it ranges anywhere from 41 million dollars to \$68 million dollars.

219

00:30:03.790 --> 00:30:11.199

Russ Snyder: It gives you an excess capacity, calculation, and it also gives you a number, a ratio called profit to excess.

220

00:30:11.500 --> 00:30:16.420

Russ Snyder: and how I came up with this is, what is a reasonable

221

00:30:17.030 --> 00:30:23.320

Russ Snyder: amount of risk to take, and what is a reasonable cost to spend to mitigate risk given that

222

00:30:23.550 --> 00:30:26.430

Russ Snyder: we know demand will go away someday.

223

00:30:27.890 --> 00:30:39.890

Russ Snyder: and I pretty much looked at a ratio of 1.0 as the break-even point. For how much risk that we should take in our particular business.

224

00:30:40.370 --> 00:30:51.959

Russ Snyder: it can be a different level, decided by management, on how much, how much risk you want to take and how much excess you're willing to accept. If demand does go away.

225

00:30:52.210 --> 00:31:03.840

Russ Snyder: different industries have different levels of demand fluctuation. And I'm not going to say that I know for every industry what that will be, but the model will allow you to predict what is appropriate for your industry.

226

00:31:04.730 --> 00:31:14.740

Russ Snyder: So, if we chose to a profit excess level of 1 point, oh, then that would deem our model would be 51 days of inventory and a 20% capacity buffer.

227

00:31:16.100 --> 00:31:19.099

Russ Snyder: and that would give us a a resilience factor of 10.

228

00:31:19.660 --> 00:31:26.560

Russ Snyder: But a fully balanced strategy requires balancing the time it takes to return to steady state with a drop in demand.

229

00:31:29.210 --> 00:31:36.650

Russ Snyder: And lastly, your resilience factor target should be proportionate to product margin and economic to make economic sense.

230

00:31:36.990 --> 00:31:51.530

Russ Snyder: So, I call this this next slide quintessential supply chain policy. Damned if you do, and damned if you don't, because if you don't plan for the risk. It's going to happen. And if you do plan for the risk, you're going to have excess, and that's why you have to balance.

231

00:31:52.250 --> 00:32:03.009

Russ Snyder: but the model allows you to know your risk, and you can take all the risk you want. But this way you're at least taking conscious risk, instead of unconscious risk.

232

00:32:03.280 --> 00:32:07.480

Russ Snyder: the resilience factor guides you with a risk level for the model disruption.

233

00:32:08.510 --> 00:32:21.540

Russ Snyder: And then, when you start to think about resilience policy, I believe that resilience policy should be more than just in the supply chain organization. It should be a business decision across management.

234

00:32:22.400 --> 00:32:25.469

Russ Snyder: and there you have to balance business priorities.

235

00:32:26.180 --> 00:32:30.680

Russ Snyder: What's most important to your organization? Is it order, fulfillment percent?

236

00:32:30.910 --> 00:32:35.430

Russ Snyder: Is it customer satisfaction? Is it profitability?

237

00:32:36.010 --> 00:32:47.860

Russ Snyder: Is it minimizing inventory or optimizing factory utilization? All these things work against each other. And

238

00:32:48.391 --> 00:32:53.529

Russ Snyder: that's why you need to make some decisions on how much risk you're willing to take

239

00:32:53.680 --> 00:32:56.590

Russ Snyder: to be able to balance these different things.

240

00:32:57.770 --> 00:32:59.559

Russ Snyder: So, let's find the balance.

241

00:32:59.680 --> 00:33:04.770

Russ Snyder: Set a resilience strategy to align with your business priorities.

242

00:33:05.510 --> 00:33:09.519

Russ Snyder: The resilience factor provides a quantifiable target for risk

243

00:33:09.970 --> 00:33:16.349

Russ Snyder: with a normalized value that you can use across any supplier, any part of the value chain.

244

00:33:16.690 --> 00:33:22.000

Russ Snyder: The profit excess ratio provides a financial metric on how much insurance you can afford.

245

00:33:25.430 --> 00:33:35.870

Russ Snyder: So, this slide it talks about the macro trends in your industry, and I alluded to one article from Hbr at the beginning that talked about. The next problem is inventory. Glut!

246

00:33:37.170 --> 00:33:39.839

Russ Snyder: Well, if you look at the dark blue line

247

00:33:40.250 --> 00:33:52.390

Russ Snyder: and I show in the timeline where the pandemic begins, inventories begin to rise, and where the pandemic ends as far as a supply demand crisis.

248

00:33:54.690 --> 00:34:03.949

Russ Snyder: if you look at the date where inventories begin to rise, you're going to see the the blue line start to rise and continue to stay high.

249

00:34:04.200 --> 00:34:11.609

Russ Snyder: And today, even today the inventory levels have not returned to steady state. They're still about 20% above

250

00:34:11.929 --> 00:34:14.539

Russ Snyder: pre-pandemic inventory levels.

251

00:34:15.949 --> 00:34:25.259

Russ Snyder: And that's that's certainly not healthy. And that's because of all the over ordering and hoarding that went on in the entire supply chain from the customer on back.

252

00:34:26.710 --> 00:34:36.070

Russ Snyder: There are a few things you can look at, and these these macro industry indicators come from the Federal Reserve data collection system.

253

00:34:36.360 --> 00:34:41.380

Russ Snyder: Everybody has access to it. It's free data. It tells you what's going on in your industry.

254

00:34:41.670 --> 00:34:48.170

Russ Snyder: There's another. There's another couple of lines. The green line and the red line show a spike.

255

00:34:48.520 --> 00:34:55.279

Russ Snyder: and that's capacity utilization in the industry for semiconductors. They show a spike

256

00:34:55.610 --> 00:35:07.800

Russ Snyder: right when inventories begin to rise, and then they taper off, and those capacity utilization numbers continue to fall. From about May of 2021

257

00:35:08.520 --> 00:35:12.749

Russ Snyder: inventories began to rise approximately May of 2021.

258

00:35:13.420 --> 00:35:29.779

Russ Snyder: So, why I share this with you is we did not see ordering slow down at all for the second half of 2021, and we and the supply chain continued to deliver it extraordinary levels through the end of 2021,

259

00:35:30.030 --> 00:35:35.979

Russ Snyder: even though the industry had already caught up with demand and was exceeding demand with our supply.

260
00:35:37.960 --> 00:35:38.940
Russ Snyder: So,

261
00:35:39.420 --> 00:35:54.250
Russ Snyder: if you're looking at managing risk and mitigating risk, these industry-wide indicators are available, and they really do tell a story. Had we started paring back our inventory targets that we had increased during the pandemic.

262
00:35:54.810 --> 00:36:07.869
Russ Snyder: even if it's not May of '21, even if it's August of '21, we would have had much less excess inventory when it when the cliff really came in in January of 2022.

263
00:36:10.480 --> 00:36:15.599
Russ Snyder: So again, we haven't returned to steady state in the semiconductor industry, and it's been

264
00:36:15.890 --> 00:36:21.560
Russ Snyder: what 4, 4, 5 years now since the pandemic began.

265
00:36:22.590 --> 00:36:32.170
Russ Snyder: Now, when downsides are more probable, and this is something you can learn from the historic macro indicators. Here

266
00:36:32.420 --> 00:36:43.489
Russ Snyder: you can be on guard for hoarding and try to read into what the customer orders are doing and what the industry inventory levels are doing and the industry capacity indicators are doing.

267
00:36:43.760 --> 00:36:49.020
Russ Snyder: Pare back inventory buffers, judge down customer demand with new product starts.

268
00:36:52.000 --> 00:36:58.209
Russ Snyder: So, the the entire electronic sector is is really had a real problem with inventory levels.

269
00:36:58.410 --> 00:37:02.129
Russ Snyder: And I think they were avoidable.

270

00:37:02.420 --> 00:37:07.350

Russ Snyder: I think that managing through the pandemic was doable

271

00:37:07.760 --> 00:37:15.739

Russ Snyder: with the right risk mitigations, and that we didn't have to end with as much excess as is in the system today.

272

00:37:16.330 --> 00:37:19.659

Russ Snyder: So, let's go back to the 1st question. Was Napoleon right?

273

00:37:20.530 --> 00:37:25.549

Russ Snyder: I say no. The torment of precautions do not exceed the danger to be avoided.

274

00:37:26.250 --> 00:37:30.039

Russ Snyder: The amount of effort it takes to simulate risk is pretty low

275

00:37:31.191 --> 00:37:37.089

Russ Snyder: the. The thing that you may not have is supplier capacity data.

276

00:37:37.530 --> 00:37:40.559

Russ Snyder: But you have. Probably the other levels of data

277

00:37:42.140 --> 00:37:49.100

Russ Snyder: understanding risk through simulation is a low-cost way to assess risk providing an easy path to mitigation.

278

00:37:49.750 --> 00:37:55.730

Russ Snyder: Mitigations can be costly and must be balanced with profitability and the state of the ecosystem.

279

00:37:57.660 --> 00:38:02.820

Russ Snyder: So, was The Economist Magazine right that we're really not going to fix supply chains.

280

00:38:03.930 --> 00:38:09.290

Russ Snyder: I fear that we won't learn from the biggest supply chain. Learning opportunity of our lifetime.

281
00:38:09.660 --> 00:38:16.160
Russ Snyder: I have had a few consulting events where

282
00:38:16.560 --> 00:38:20.509
Russ Snyder: the customer really did not want to

283
00:38:21.660 --> 00:38:28.730
Russ Snyder: fully manage the risk and balance the system. They were really more interested in understanding.

284
00:38:29.256 --> 00:38:34.309
Russ Snyder: How can I chase parts better when we do have an issue and be reactive.

285
00:38:35.010 --> 00:38:40.019
Russ Snyder: And how can I get faster information from my suppliers when I have a disruption

286
00:38:40.250 --> 00:38:43.459
Russ Snyder: and supply chain really doesn't move that fast

287
00:38:44.084 --> 00:38:49.699
Russ Snyder: knowing that data is important and being able to react to a situation is important.

288
00:38:49.840 --> 00:38:57.399
Russ Snyder: But planning and mitigating before an event happens, is far more successful. And I think.

289
00:38:57.967 --> 00:39:03.519
Russ Snyder: you know, our results during the pandemic showed that we had done a good amount of planning ahead of time.

290
00:39:03.640 --> 00:39:08.500
Russ Snyder: We didn't do a hundred percent of planning, and we didn't do a hundred percent of mitigation.

291
00:39:09.150 --> 00:39:14.370
Russ Snyder: But we were very successful through the supply chain during the pandemic.

292

00:39:15.026 --> 00:39:18.280

Russ Snyder: What's the biggest benefit of modeling and mitigating

293

00:39:18.460 --> 00:39:21.860

Russ Snyder: to me? It's not really for the pandemics.

294

00:39:22.340 --> 00:39:30.580

Russ Snyder: It's for normal cycles that you see, that are less severe than something like a major disruption.

295

00:39:31.130 --> 00:39:37.440

Russ Snyder: As I said, every 3 years we had we had some kind of issue with a supplier or an industry-wide event.

296

00:39:38.650 --> 00:39:51.159

Russ Snyder: and those were less severe cycles. It's dealing with one supplier, or it's dealing with an industry that is constrained on capacitors. Those are the type of things that we faced on a more frequent basis

297

00:39:51.780 --> 00:39:53.970

Russ Snyder: that are much less catastrophic.

298

00:39:54.350 --> 00:40:05.639

Russ Snyder: But the inventory and capacity buffers that we put in place manage through those situations with a lot of out, a lot of extra work and a lot of hand holding with suppliers.

299

00:40:06.580 --> 00:40:13.670

Russ Snyder: And lastly, I'll leave you with the quote from Benjamin Franklin - "An ounce of prevention is worth a pound of cure."

300

00:40:14.300 --> 00:40:15.709

Russ Snyder: And I hope

301

00:40:16.350 --> 00:40:22.690

Russ Snyder: you've had a lot of good takeaways from today, and that your supply chains will become a lot more resilient.

302

00:40:23.020 --> 00:40:25.650

Russ Snyder: and on that I'm going to turn it back over to Brian.

303

00:40:28.280 --> 00:40:36.610

Brian Scarpace: Russ. Thank you so much. That was fantastic. We have a couple of questions we were going to share with you. If that's okay. Russ.

304

00:40:36.830 --> 00:40:37.490

Russ Snyder: Sure.

305

00:40:38.610 --> 00:40:40.930

Brian Scarpace: Alright! Get those up for you.

306

00:40:43.820 --> 00:40:44.850

Brian Scarpace: Sorry about that.

307

00:40:48.390 --> 00:40:49.319

Brian Scarpace: There we go.

308

00:40:51.700 --> 00:41:04.029

Brian Scarpace: So, Russell. One of the questions we had was, "Why is Just In Time still a prominent model for inventory and the lean community, given that even Toyota has had to add buffer inventories?"

309

00:41:07.350 --> 00:41:12.483

Russ Snyder: Well, I I can't say for sure, but I think the biggest thing is

310

00:41:12.970 --> 00:41:17.240

Russ Snyder: Change comes slowly, and when we've taught

311

00:41:17.430 --> 00:41:24.160

Russ Snyder: for so long. That inventory is a waste, and that your best way to

312

00:41:25.090 --> 00:41:29.250

Russ Snyder: get out of inventory being a waste is to do just in time.

313

00:41:29.803 --> 00:41:36.879

Russ Snyder: I think it's hard to undo years of training and years of learning and years of doing.

314

00:41:37.070 --> 00:41:52.750

Russ Snyder: But I think that you know the opportunity here is that the pandemic has shown us that JIT may not be the best thing. The automotive industry took longer than every other industry to recover, and they primarily use JIT for everything.

315

00:41:53.030 --> 00:42:03.099

Russ Snyder: and if Toyota is willing to bend the lien rules a little bit, I think that the rest of us should be willing to look at some other inventory options and capacity options, as well.

316

00:42:05.980 --> 00:42:13.970

Brian Scarpace: Excellent. Another question we had was, "How easy is it to get accurate supplier capacity utilization forecasts for us?

317

00:42:16.520 --> 00:42:24.549

Russ Snyder: I think this is a blind spot in purchasing organizations contracts with suppliers. I think that we only went out to get

318

00:42:24.710 --> 00:42:31.080

Russ Snyder: detailed capacity information, maybe once a year when we were planning a new product launch.

319

00:42:31.330 --> 00:42:33.229

Russ Snyder: And to me.

320

00:42:33.920 --> 00:42:48.109

Russ Snyder: when ecosystem events occur when suppliers get another customer who has large capacity requirements. It doesn't give us that information that we need to make those decisions and run the model.

321

00:42:48.550 --> 00:43:02.640

Russ Snyder: And it is difficult, and it hasn't been on anyone's radar, and I think that contracts and expectations of suppliers need to be to provide capacity information on a frequent basis, monthly or quarterly.

322

00:43:03.300 --> 00:43:05.980

Russ Snyder: And I also think

323

00:43:07.110 --> 00:43:17.979

Russ Snyder: that, you know suppliers may not want to give you that information, because it is also a negotiating point with customers when they know that you have lots of capacity available.

324

00:43:18.809 --> 00:43:25.280

Russ Snyder: And this is part of the problem with supply chain of value chain is is transparency of information

325

00:43:25.560 --> 00:43:34.019

Russ Snyder: when it becomes about dollars and cents and negotiating. And who has the power? Then some of these things

326

00:43:35.290 --> 00:43:44.480

Russ Snyder: don't get transmitted or exposed to to either party. And that's what really the problem is, is dollars

327

00:43:44.900 --> 00:43:52.859

Russ Snyder: when it might impact your ability to negotiate a better price with your customer. They don't want to tell you that they don't. They have a lot of capacity available.

328

00:43:55.960 --> 00:43:59.200

Brian Scarpase: Excellent Russ, I don't see any more

329

00:43:59.490 --> 00:44:10.336

Brian Scarpase: questions, but we just thank you so much, Russ. That was fantastic. And if anybody has any questions after the event, please feel free to share them, and we'll we'll send those along. And then,

330

00:44:10.850 --> 00:44:36.220

Brian Scarpase: just a couple of things I wanted to run through here before we conclude. Just want to let you know that we just released our 2024 Insights on Excellence Executive Summary and Annual Report, so you can check that out. It includes a few items for you to review and share with your team as well. It includes a overview of our Association Highlights for ASQE as well as our Association Impact Report.

331

00:44:36.220 --> 00:44:43.690

Brian Scarpase: And then it also includes the Insights on Excellence research that we've had. This is the good stuff this talks about some of the emerging trends that we see in our research.

332

00:44:43.690 --> 00:45:02.569

Brian Scarpace: And then we also talk about in the Insights on Excellence research our Annual Report, the looking forward to '25. So, these are ways that ASQE is supporting our organizations and advancing our mission. You can download the report complimentary download at insightsonexcellence.org, or you can use the QR code that you see on the screen.

333

00:45:04.840 --> 00:45:30.990

Brian Scarpace: If you enjoyed today's event, we hope you can join us on February 20th. We're going to host Member Benefit Session focused on Certification, and whether you have a certification from ASQ, or you're thinking about one, this is a great event to join us. Invitations will be going out next week, and you know, please invite a friend. If you have somebody at your organization who would like to learn more about the Certifications that ASQ makes available or recertification, please join us for that.

334

00:45:31.150 --> 00:45:48.179

Brian Scarpace: Also coming up, ASQ is hosting a Lean and Six Sigma Conference in Phoenix on February 23rd through 25th and the theme will be "Keeping the Pulse on Quality." So, hope you can join us in Phoenix for that; it's a great place to be in February.

335

00:45:48.510 --> 00:46:15.289

Brian Scarpace: So, if you wouldn't mind to help us out, Russ. Thanks again so much. This was fantastic. I'm just gonna ask our audience if we'll put a survey in the chat. If you can let us know, it's a 3-question survey, if you can take that and let us know what you thought about today's event, your experience. This really helps us out and helps us kind of shape the content that we have going forward. So, really appreciate it. Thank you again for your membership. Russ, thank you again

336

00:46:15.470 --> 00:46:17.340

Brian Scarpace: for making today possible.

337

00:46:18.370 --> 00:46:19.640

Russ Snyder: Thanks for having me.

338

00:46:20.110 --> 00:46:20.770

Brian Scarpace: Alright.

339

00:46:21.120 --> 00:46:22.399

Brian Scarpace: We'll see you next time.